Crude Extract Activity of Fibrinolytic Enzyme Bacillus cereus Isolated from Mangrove Forest Water Maroon Edupark Semarang In Vitro
Abstract
Fibrinolytic enzymes are enzymes that work by degrading fibrin in blood clots. Fibrinolytic enzymes are produced by many organisms, one of which is the bacterium Bacillus cereus from the water of the Maroon Edupark mangrove forest, Semarang. Isolation of fibrinolytic enzymes from bacteria is very important because bacteria are easy to grow, have a fast generation time, do not require a large area for cultivation, and are easily genetically modified so that it will be more economically profitable. In addition, fibrinolytic enzymes from natural ingredients have fewer side effects than synthetic fibrinolytic drugs. This study aims to determine the activity of the crude extract of the fibrinolytic enzyme B. cereus in lysis blood clots in vitro.
The study began with confirmation of the presence of genes encoding fibrinolytic enzymes from bacteria B. cereus uses NCBI's popular resources 'nucleotide', identification of bacterial morphology in blood agar media, Gram staining, endospore staining, catalase and coagulase testing. Isolation of crude extract of fibrinolytic enzyme B. cereus is carried out by enzyme extraction. Protein concentration were determined using Bradford method and fibrinolytic activity test in vitro using fibrin plate media with nattokinase as positive control. The resulting clear zone shows the ability of the enzyme extract in degrading fibrin
The results of the identification of the B. cereus bacterial gene uses the NCBI data base registered as the AprE gene. The results of the identification of gram and endospore staining, B. cereus is a Gram-positive bacterium and has endospores. Identification of bacteria on blood agar media indicates that B. cereus represents the group of the β-hemolysis. Catalase and coagulase test results show that the bacteria produce catalase and coagulase enzymes. Total protein concentration from crude extract of B. cereus obtained at 19.63 mg/mL. Fibrinolytic activity at concentrations of 20, 40, 80% was 2.54; 6.11; and 7.94 mm respectively. Based on the above results it can be concluded that the crude extract of fibrinolytic enzyme B. cereus has the potential to be developed as a natural fibrinolytic agent.
References
[2] Macintosh D J, Ashton E C, dan Havanon S. (2002). Mangrove rehabilitation and intertidal biodiversity: a study in the Ranong mangrove ecosystem, Thailand. Estuarine, Coastal and Shelf Science, 55(3): 331-345.
[3] Siti S, Sutrisno A, dan Niniek W. (2017). Kelimpahan bakteri heterotroph sedimen berbagai tipe kerapatan dikawasan konservasi mangrove Desa Bendono, Kecamatan Sayung, Demak. JOURNAL OF MAQUARES, volume 6, nomor 3: 311-317
[4] Villain S, Luo Y, Hildreth M, dan Brozel V. (2006). Analysis of the Life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Applied Environmental Microbiology, 72(7): 4970-4977.
[5] Choi N S, Kim B Y, Lee J Y, Yoon K S, Han K Y dan Kim S H. (2002). Relationship between acrylamide concentration and enzymatic activity in an improved single fibrin zymogram gel system. Journal of biochemistry and molecular biology, 35(2), 236-238. Oxoid. Manual Oxoid. Edisi 9.
[6] Nugraha U S, Haryani T S, Larashati. (2018). Skrining isolat bakteri limbah industri berpotensi menurunkan konsentrasi kadmium (Cd) secara in vitro. JOM, 2: 2-3
[7] Krihariyani D, Evy D W, Entuy K. (2016). Pola pertumbuhan Staphylococcus aureus pada media agar darah manusia golongan O, AB, dan darah domba sebagai kontrol. Jurnal Ilmu dan Teknologi Kesehatan, 3: 193-198
[8] Arifin A, Hayati Z, Jamil K F. (2016). Isolasi dan identifikasi bakteri di lingkungan laboratorium mikrobiologi klinik RSUDZA Banda Aceh. Original Article, 1: 3-4.
[9] Wijayati N, Astutiningsih C, dan Mulyati S. (2014). Transformasi-pinena dengan bakteri Pseudomonas aeruginosa ATCC 25923. Biosaintifika: Journal of Biology & Biology Education, 6(1): 24-28.
[10] Dinoto A, Julistiono H, Handayani R, Roswiem A P, Sari P N dan Saputra S. (2020). Seleksi bakteri asam laktat dari nira aren [(Arenga pinnata (Wurmb)] asal Papua sebagai kandidat probiotik. Jurnal Biologi Indonesia, 16(1).
[11] Dayanara, I., Kawuri, R., & Yulihastuti, D. A. (2019). The presences of pathogenic bacteria in snack for school children on Sapeken Island, Sumenep, East Java. Jurnal Biologi Udayana, 23(2), 68-79.
[12] Marler Linda M, Siders Jean A, Allen, Stephen D. (2017). Atlas Pewarnaan Gram. Jakarta: EGC.
[13] Oktari A, Supriatin Y, Kamal M and Syafrullah H. (2017). The bacterial endospore stain on Schaeffer Fulton using variation of methylene blue solution. J. Phys.: Conf. Ser, 812 012066.
[14] Lay B W. (1994). Analisis Mikroba di Laboratorium. PT. Raja Persada, Jakarta.
[15] Siagian R. (2016). Identifikasi jamur pada apusan AC di ruang kelas S-1 Fakultas Kedokteran Universitas Sumatera Utara.
[16] Anggraini N E D, dan Awan N C E. (2018). Uji daya hambat antibakteri ekstrak kasar enzim bromelin dari bonggol nanas (Ananas comosus (L) Merr) terhadap Lactobacillus acidhopilus (Doctoral dissertation, Akademi Farmasi Putera Indonesia Malang).
[17] Utami P, Lestari S, dan Lestari S D. (2016). Pengaruh metode pemasakan terhadap komposisi kimia dan asam amino ikan seluang (Rasbora argyrotaenia). Jurnal FishtecH, 5(1), 73-84.
[18] Poernomo A T. (2015). Aktivitas in vitro enzim fibrinolitik ekstrak tempe hasil fermentasi Rhizopus Oligosporus ATCC 6010 pada substrat kedelai hitam. Berkala Ilmiah Kimia Farmasi, 4(2), 18-24.
[19] Zaman R, Parvez M, Jakaria M, Sayeed M A, dan Islam M. (2015). In vitro clot lysis activity of different extracts of Mangifera sylvatica roxb. leaves. Research Journal of Medicinal Plant, 9(3): 135-140
[20] Poernomo A T, dan Sudjarwo R A P. (2014). Purifikasi parsial enzim fibrinolitik tempe kacang koro. Berkala Ilmiah Farmasi: Universitas Airlangga.
[21] Hakim R F, Fakhrurrazi F, dan Ferisa W. (2016). Pengaruh air rebusan daun salam (Eugenia polyantha wight) terhadap pertumbuhan Enterococcus faecalis. Journal of Syiah Kuala Dentistry Society, 1(1):21-28
[22] Pratita M Y E, Putra S R. (2012). Isolasi dan identifikasi bakteri termofilik dari sumber mata air panas di Songgoriti setelah dua hari inkubasi. Teknik Pomits. Institut Teknologi Sepuluh Nopember
[23] Beattie S H, Holt C, Hirst D, and Williams A G. (1998). Discrimination among Bacillus cereus, B. mycoides and B. thuringiensis and some other species of the genus Bacillus by Fourier transform infrared spectroscopy. FEMS microbiology letters, 164(1): 201-206.
[24] Mercedes A, Xevi B, Pietro V, Carme R. (2009]. The Molecular Mechanism of the Catalase Reaction. Journal of the American Chemical Society, 131(33): 1751-61
[25] Khopkar S M. (2007). Konsep dasar kimia analitik, UI Press, Jakarta
[26] Sharma C, Salem G E M, Sharma N, Gautam P, dan Singh R. (2020). Thrombolytic potential of novel thiol-dependent fibrinolytic protease from Bacillus cereus RSA1. Biomolecules, 10(1): 3.
[27] Dabbagh F, Negahdaripour M, Berenjian A, Behfar A, Mohammadi F, Zamani M, dan Ghasemi Y. (2014). Nattokinase: production and application. Applied microbiology and biotechnology, 98(22): 9199-9206
[28] Saxena R, Singh R. (2015). MALDI-TOF MS and CD spectral analysis for identification and structure prediction of a purified, novel, organic solvent stable, fibrinolytic metalloprotease from Bacillus cereus B80. BioMed Research International, 13.
[29] Biji GD, Arun A, Muthulakshmi E, Vijayaraghavan P, Arasu MV. (2016). Bioprospecting of cuttle fish waste and cow dung for the production of fibrinolytic enzyme from Bacillus cereus IND5 in solid state fermentation. Biotech 6: 231
[30] Hongjie C, Eileen M, Nina R, Sara L, Najah N, Fatima S, Xianqin Q, and Yiguang L. (2018). Nattokinase: a promising alternative in prevention and treatment of cardiovascular diseases. Biomark Insights,13: 1177271918785130.