Effect of Concentration and Soaking Time of Sugarcane Bagasses on Acrylamide Content in Used Cooking Oil

  • Gatut Ari Wardani STIKes Bakti Tunas Husada Tasikmalaya
  • Widdy Erlinasari
  • Lilis Tuslinah

Abstract

Hydrolyzed cooking oil will form glycerol and free fatty acids, so that when heated glycerol will form acrolein, one of the compounds forming acrylamide. Bagasse contains cellulose which can bind acrylamide. The purpose of this study was to determine the effect of adding pulp and the effect of soaking time on acrylamide levels.

Analysis was performed using High-Performance Liquid Chromatography, column Agilent TC-C18 mobile phase 0.1% phosphoric acid and methanol in a ratio of 95:5; flow rate 1 mL/min; the sample volume injected was 20µL. Acrylamide in oil was identified at a retention time of 4,939 minutes, theoretical plate 39,029, HETP 0.00064, and capacity factor 2.265 This study meets the method validation parameters such as linearity with the results of y = 259.37x + 103.39 and a correlation coefficient of 0.9993, precision with % RSD < 2%, detection limit 0.46 ppm, quantification limit 1.396 ppm, accuracy with % recovery 94 .55 - 100.04. The results of FTIR, bagasse can bind the C=O and C-H groups of one of the acrylamide groups. The adsorption kinetics model used was the Ho model with linearity of 0.9752. Sugarcane bagasse concentration of 5% and soaking time of 24 hours affected the decrease in acrylamide levels in used cooking oil. Soaking used cooking oil samples with 5% bagasse for 24 hours can reduce acrylamide levels by 65%.

References

[1] S. Karouw and C. Indrawanto, “Perubahan mutu minyak kelapa dan minyak sawit selama penggorengan,” Bul. Palma, vol. 16, no. 1, pp. 1–7, 2015, doi: 10.21082/bp.v16n1.2015.1-7.
[2] D. Ariani, S. Yanti, and D. S. Saputri, “Studi kualitatif dan kuantitatif minyak goreng yang digunakan oleh penjual gorengan di kota Sumbawa,” J. TAMBORA, vol. 2, no. 3, pp. 1–8, 2017, doi: 10.36761/jt.v2i3.173.
[3] N. Sri Gunarti, L. Tuslinah, and S. Amin, “Perbandingan kadar akrilamida pada minyak goreng bekas,” Pharma Xplore J. Sains dan Ilmu Farm., vol. 1, no. 1, 2016.
[4] Badan Pengawas Obat dan Makanan RI, Petunjuk meminimalkan terbentuknya cemaran kimia pada pangan siap saji dan pangan industri rumah tangga sebagai pangan jajanan anak sekolah. Jakarta: Direktorat Standarisasi Produk Pangan, Deputi Bidang Pengawasan Keamanan Pangan dan bahan Berbahaya, BPOM RI, 2012.
[5] E. W. I. Hajar, A. F. W. Purba, P. Handayani, and Mardiah, “Proses pemurnian minyak jelantah menggunakan ampas tebu untuk pembuatan sabun padat,” J. Integr. Proses, vol. 6, no. 2, pp. 57–63, 2016.
[6] W. T. Wulandari and R. Dewi, “Selulosa dari ampas tebu sebagai adsorben pada minyak bekas penggorengan,” Kovalen, vol. 4, no. 3, pp. 332–339, 2018, [Online]. Available: https://bestjournal.untad.ac.id/index.php/kovalen/article/download/10920/9101.
[7] H. Swandi, A. Hadriyati, and M. Sanuddin, “Validasi dan analisis kadar akrilamida pada kopi tungkal dengan metode kromatografi cair kinerja tinggi (KCKT),” Ekol. J. Ilm. Ilmu Dasar dan Lingkung. Hidup, vol. 20, no. 1, pp. 40–44, 2020, doi: 10.33751/ekologia.v20i1.1983.
[8] Harmita, Analisis Fisikokimia: Kromatografi. Jakarta: EGC, 2015.
[9] S. M. Sirait, “Analisis akrilamida dalam minyak goreng bekas pakai secara kromatografi cair kinerja tinggi,” Universitas Sumatera Utara, 2011.
[10] D. A. Ningsih, I. Said, and P. Ningsih, “Adsorpsi logam timbal (Pb) dari larutannya dengan menggunakan adsorben dari tongkol jagung,” J. Akad. Kim., vol. 5, no. 2, pp. 55–60, 2016, [Online]. Available: http://jurnal.untad.ac.id/jurnal/index.php/JAK/article/view/8002.
[11] F. Sukarta, “Pemanfaatan arang aktif tempurung kelapa sawit dan tongkol jagung sebagai adsorben logam berat pada limbah batik,” Institut Pertanian bogor, 2014.
[12] R. P. Anjani and T. Koestiari, “Penentuan massa dan waktu kontak optimum adsorpsi karbon granular sebagai adsorben logam berat Pb(II) dengan pesaing ion Na+,” UNESA J. Chem., vol. 3, no. 3, pp. 159–163, 2014.
[13] L. M. Barros Júnior, G. R. Macedo, M. M. L. Duarte, E. P. Silva, and A. K. C. L. Lobato, “Biosorption of cadmium using the fungus aspergillus niger,” Braz. J. Chem. Eng., vol. 20, no. 3, pp. 229–239, 2003, doi: 10.1590/S0104-66322003000300003.
[14] J. P. Holmberg, “Competitive adsorption and displacement behaviour of heavy metals on peat,” Chalmers University of Technology, Goteborg, 2006.
[15] I. Yanti, S. J. Santosa, and I. Kartini, “Kinetics study of Au(III) adsorption on gallic acid intercalated Mg/Al-hydrotalcite,” Eksakta J. Ilmu-Ilmu MIPA, vol. 16, no. 1, pp. 27–35, 2016, doi: 10.20885/eksakta.vol16.iss1.art4.
[16] Dachriyanus, Analisis struktur senyawa organik secara spektroskopi. Padang: LPTIK Universitas Andalas, 2004.
Published
2022-04-30