Literature Review: Aktivitas Batang dan Daun Sambiloto (Andrographis Paniculata Nees) terhadap Target Molekular Terapi Diabetes

  • Nurul Hidayatul Mar'ah Universitas Setia Budi

Abstract

Andrographis paniculata Nees, so-called sambiloto is a plant that is effective as an alternative therapy for diabetes mellitus (DM). Sambiloto is a multi-compound plant that contains diterpenoids, flavonoids and polyphenols. This study aims to explain the activity of chemical compounds contained in the stems and leaves of sambiloto against five molecular targets for DM therapy, namely Dipeptidyl Peptidase 4 (DPP4), Protein Tyrosine Phosphatase (PTP1B), α-glucosidase, Glucose Transporter (GLUT) and glucokinase. This study uses a systematic review method by making PRISMA checklists and flow diagrams, determining inclusion-exclusion criteria, search engines and keywords to get relevant data. The data is obtained from the primary research results presented in the data extraction table, and then is analyzed comprehensively. The results of the study are: the diterpenoids and flavonoids can provide activity against molecular targets, such as 19-triphenyl isoandrographolide which can inhibit DPP4, α-glucosidase and activate glucokinase; andrographolactone can inhibit PTP1B; deoxyandrographolide increase translocation and acceleration of GLUT4; 15-p-methoxybenziliden 14-deoxy-11,12-didehydroandrographolide inhibits α-glukosidase; and flavonoid groups such as apigenin compounds can inhibit DPP4, PTP1B, and activate glucokinase.
Keywords: Andrographis paniculata; antidiabetic; molecular target.

References

[1]. Alberti, K. G. M. M., & Zimmet, P. Z. (1998). Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications Part 1: Diagnosis and Classification of Diabetes Mellitus Provisional Report of a WHO Consultation. Diabetic Medicine, 15: 539–553.
[2]. Arha, D., Pandeti, S., Mishra, A., & Prakash, S. (2015). Deoxyandrographolide promotes glucose uptake through glucose transporter-4 translocation to plasma membrane in L6 myotubes and exerts antihyperglycemic effect in vivo. European Journal of Pharmacology, 768: 207–216. https://doi.org/10.1016/j.ejphar.2015.10.055.
[3]. Boyle, D. I. R., Evans, J. M. M., Sullivan, F., & Morris, A. D. (2001). Contraindications to metformin therapy in patients with Type 2 diabetes population-based study of adherence to prescribing guidelines, (18): 483–488. https://doi.org/10.1046/j.1464-5491.2001.00509.x.
[4]. Dai, G., Xu, H., Wang, J., Liu, F., & Liu, H. (2006). Studies on the novel a -glucosidase inhibitory activity and structure activity relationships for andrographolide analogues. Bioorganic & Medicinal Chemistry Letters, 16, 16: 2710–2713. https://doi.org/10.1016/j.bmcl.2006.02.011.
[5]. Deacon, C. F., & Holst, J. J. (2006). Dipeptidyl peptidase IV inhibitors: A promising new therapeutic approach for the management of type 2 diabetes. International Journal of Biochemistry and Cell Biology, 38(5–6): 831–844. https://doi.org/10.1016/j.biocel.2005.09.011.
[6]. Deng, D., Sun, P., Yan, C., Ke, M., Jiang, X., Xiong, L., & Ren, W. (2015). Molecular basis of ligand recognition and transport by glucose transporters. Nature, 526: 391–396. https://doi.org/10.1038/nature14655.
[7]. Efanov, A. M., Barrett, D. G., Brenner, M. B., Briggs, S. L., Delaunois, A., Durbin, J. D., & Gromada, J. (2005). A Novel Glucokinase Activator Modulate Pancreatic Islet and Hepatocyte Function. Endocrinology, 146(9): 3696–3701. https://doi.org/10.1210/en.2005-0377.
[8]. Gauer, J. S., Tumova, S., Lippiat, J. D., Kerimi, A., & Williamson, G. (2018). Differential patterns of inhibition of the sugar transporters GLUT2 , GLUT5 and GLUT7 by flavonoids. Biochemical Pharmacology, 152(3): 11–20. https://doi.org/10.1016/j.bcp.2018.03.011
[9]. Gong, Y., Qin, X., Zhai, Y., Hao, H., Lee, J., & Park, Y. (2017). Macromolecules Inhibitory effect of hesperetin on α-glucosidase : Molecular dynamics simulation integrating inhibition kinetics. International Journal of Biological Macromolecules, 101: 32–39. https://doi.org/10.1016/j.ijbiomac.2017.03.072.
[10]. Hiriyanna, K. T., Baedke, D., Baek K. H., & Forney B. A. (1994). Thiophosphorylated substrate analogs are potent active site-directed inhibitors of protein-tyrosine phosphatases. Analytical Biochemistry, 223(1): 51–58. https://doi.org/10.1006/abio.1994.1545.
[11]. Jia, Z., Ye, Q., Dinaut, A. N., Wang, Q., Waddleton, D., Payette, P., … Taylor, S. D. (2001). Structure of Protein Tyrosine Phosphatase 1B in Complex with Inhibitors Bearing Two Phosphotyrosine Mimetics. J. Med. Chem., 44: 4584–4594. https://doi.org/10.1021/jm010266w.
[12]. Julaiha, Widodo, G. P., & Herowati, R. (2019). Predicting ADME and Molecular Docking Analysis of Andrographis paniculata and Strobilanthes crispus Chemical Constituens Against Antidiabetic Molecular Targets. Journal of The Indonesian Chemical Society, 02(2): 106–113. https://doi.org/10.34311/jics.2019.02.2.106.
[13]. Kerru, N., Singh-Pillay, A., Awolade, P., & Singh, P. (2018). Current anti-diabetic agents and their molecular targets: A review. European Journal of Medicinal Chemistry, 152: 436–488. https://doi.org/10.1016/j.ejmech.2018.04.061.
[14]. Kharya, M. D. (2012). Glucose metabolism and diabetogenic gene expression analysis of chloroform fraction of Andrographis paniculata ( Nees ) whole herb in diabetic albino mice expression analysis of chloroform fraction of diabetic albino mice. Journal of Complementary and Integrative Medicine, 9(1): 1–16. https://doi.org/10.1515/1553-3840.1632.
[15]. Mccall, A. L. (2019). Glucose Transport. Stress: Physiology, Biochemistry, and Pathology. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813146-6.00022-9.
[16]. Pholphana, N., Rangkadilok, N., Thongnest, S., Ruchirawat, S., Ruchirawat, M., & Satayavivad, J. (2004). Determination and variation of three active diterpenoids in Andrographis paniculata (Burm.f.) Nees. Phytochemical Analysis, 15(6): 365–371. https://doi.org/10.1002/pca.789.
[17]. Rafat, A., Philip, K., & Muniandy, S. (2010). Antioxidant potential and content of phenolic compounds in ethanolic extracts of selected parts of Andrographis paniculata. Journal of Medicinal Plants Research, 4(2): 197–202. https://doi.org/10.5897/JMPR.9000224.
[18]. Subramanian R., M. Zaini Asmawi, & Amirin Sadikun. (2008). In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochimica Polonica, 55(2): 391–398. DOI: https://doi.org/10.18388/abp.2008_3087.
[19]. Rao, Y. K., Vimalamma, G., Rao, C. V., & Tzeng, Y. (2004). Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry, 65: 2317–2321. https://doi.org/10.1016/j.phytochem.2004.05.008.
[20]. Riyanti, S., Suganda, A. G., & Sukandar, E. Y. (2016). Dipeptidyl Peptidase-IV Inhibitory Activity of Some Indonesian Medical Plants. Asian Journal of Pharmaceutical and Clinical Research, 9(2): 2–4.
[21]. Saifudin, A., Kadota, S., & Tezuka, Y. (2012). Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum. J. Nat. Med., 67, (5): 264-270. https://doi.org/10.1007/s11418-012-0674-7.
[22]. Subramanian, R., & Asmawi, M. Z. (2006). Inhibition of a -Glucosidase by Andrographis paniculata Ethanol Extract in Rats. Pharmaceutical Biology, 44(8): 600–606. https://doi.org/10.1080/13880200600896892.
[23]. Subramanian, R., Asmawi, M. Z., & Sadikun, A. (2008). Effect of Andrographolide and Ethanol Extract of Andrographis paniculata on Liver Glycolytic , Gluconeogenic , and Lipogenic Enzymes in a Type 2 Diabetic Rat Model. Pharmaceutical Biology, 46(11): 772–780. https://doi.org/10.1080/13880200802316079.
[24]. W. H. O. (2019). Classification of Diabetes Mellitus 2019. World Health Organization.https://apps.who.int/iris/bitstream/handle/10665/325182/9789241515702-eng.pdf.
Published
2021-12-01