Comparative Analysis of Forecasting Methods on Water Production in PDAM XYZ
Abstract
Good production planning can meet the demand and availability of raw materials, as well as proper production planning and scheduling, production control, inventory control, and evaluation. PDAM XYZ produces clean water for the Banyumas Regency area. Water demand at PDAM XYZ is starting to exceed the production capacity limit, so a capacity addition plan is needed to meet the customer's clean water demand. The addition of capacity can be calculated by calculating demand forecasting. Thus, this study aims to determine the best forecasting method for making water demand forecasting calculations at PDAM XYZ and the estimated amount of water demand at PDAM XYZ in the next five years. The forecasting methods used are least square and regression. The accuracy values compared are MAD, MSE, RMSE, MAPE, and Tracking signal. The results of the comparison state that the regression method is better with a MAD value of 129938.4, MSE of 28536740000, RMSE of 168928.2, and MAPE of 0.05. So, in planning the addition of production capacity, the regression method can be used to forecast calculations as a reference for determining the additional production capacity. The forecasting results using the regression method show a value of 4,352,051 m3. Based on these results, it is expected that PDAM XYZ will be able to map the amount of clean water demand so that customer water needs can be met.
References
Akhmad. (2019). POM QM For Windows | Software Andalan Untuk Peramalan Bisnis. 2019.
Ardesfira, G., Zedha, H. F., Fazana, I., Rahmadhiyanti, J., Rahima, S., Anwar, S., Statistika, J., Kuala, U. S., Aceh, B., & Tukar, N. (2022). Jambura Journal Of Probability and Statistics, Vol 3 No 2.
Desvina, A. P., & Nuraziza, D. (2022). Peramalan Metode Box-Jenkins Untuk Memprediksi Banyaknya Air Bersih yang Disalurkan PDAM di Pekanbaru. Jurnal Sains Matematika Dan Statistika, 8(2), 146. https://doi.org/10.24014/jsms.v8i2.18775
Diki, M. (2023). Hutama Karya Bangun Sarana Air Bersih dan Renovasi Fasilitas Pendidikan di Sumbar.
El-Hashash, E. F., & Shiekh, R. H. A. (2022). A Comparison of the Pearson, Spearman Rank and Kendall Tau Correlation Coefficients Using Quantitative Variables. Asian Journal of Probability and Statistics, October, 36-48. https://doi.org/10.9734/ajpas/2022/v20i3425
Ghifari, N. Z., Zukhronah, E., & Respatiwulan. (2024). PERAMALAN VOLUME AIR TERJUAL DI PDAM GIRI TIRTA SARI MENGGUNAKAN MODEL HIBRIDA SINGULAR SPECTRUM ANALYSIS – SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE. Seminar Nasional Sains Dan Teknologi, 1(2), 194-205.
Habsari, H. D. P., Purnamasari, I., & Yuniarti, D. (2020). Forecasting Uses Double Exponential Smoothing Method and Forecasting Verification Uses Tracking Signal Control Chart (Case Study: Ihk Data of East Kalimantan Province). BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 013-022. https://doi.org/10.30598/barekengvol14iss1pp013-022
Jonathan, K. (2022). Analisis Manfaat Perbandingan bagi Perusahaan. 2022.
Khairil Hendarwati, E., Lepong, P., & Suyitno. (2023). Pemilihan Semivariogram Terbaik Berdasarkan Root Mean Square Error (Rmse) Pada Data Spasial Eksplorasi Emas Awak Mas. Jurnal Geosains Kutai Basin, 6(1).
Khoiri. (2020). Cara Menghitung Mean Absolute Percentage Error (MAPE) di Excel dan Pengertiannya.
Muhammad, I. (2023). PDAM Adalah Salah Satu Perusahaan Milik Pemda. 2023.
Putra Manurung, B. U. (2015). Implementasi least square dalam untuk prediksi penjualan sepeda motor (studi kasus : PT. Graha Auto Pratama). Jurnal Riset Komputer (JURIKOM), 2(6), 21-24.
Rahardjo, S. (2019). Cara Uji Korelasi Kendall’s tau-b (Data Ordinal) dengan SPSS Lengkap. 2019.
Ramadhan, D. R., Rakhmawati, F., & Aprilia, R. (2024). Prediction of Clean Water Supply Using the Fuzzy Time Series Cheng Method at PDAM Tirta Silau Piasa. Jurnal Matematika, Statistika Dan Komputasi, 20(2), 340-350.
Salim, R., & Taslim, T. (2021). Edukasi Manfaat Air Mineral Pada Tubuh Bagi Anak Sekolah Dasar Secara Online. Jurnal Pengabdian Kepada Masyarakat, 27(2), 126-135.
Serafica, G. (2023). Peramalan Penjualan: Pengertian, Tujuan, dan Metode.
Suara Banyumas. (2020). Jumlah Pelanggan Perumdam Tirta Satria Naik 30 Persen.
Suryanto, A. A. (2019). Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi. Saintekbu, 11(1), 78–83. https://doi.org/10.32764/saintekbu.v11i1.298
Susilawati, S., & Muhathir, M. (2019). Analisis Pengaruh Fungsi Aktivasi, Learning Rate Dan Momentum Dalam Menentukan Mean Square Error (MSE) Pada Jaringan Saraf Restricted Boltzmann Machines (RBM). Journal of Informatics and Telecommunication Engineering, 2(2), 77. https://doi.org/10.31289/jite.v2i2.2162
Weisberg, S. (2014). Applied Linear Regression. In Sustainability (Switzerland) (4th ed., Vol. 11, Issue 1). John Wiley & Sons.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.